Written exam statistic

Task 1: Equipp the set $\Omega=\mathbb{N}$ with a probability measure \mathbb{P}. Here \mathbb{N} denotes the set of natural numbers $\{0,1,2,3, \ldots$.$\} .$
a) define a random variable X on the probability space (Ω, \mathbb{P}) such that $0<\operatorname{var}(X)<\infty$
b) compute the expectation and variance of X
c) Find two independent events A and B on (Ω, \mathbb{P})

Task 2: Given a continuos random variable X with cdf (cumulative distribution function) $F_{X}(z)=$ $1-e^{-a x^{2}}$ for $x \geq 0$ and zero otherwise $(a>0)$
a) Compute the density $f(z)$ of X and draw $f(z)$ and $F(z)$ for the value $a=1$
b) Compute for $a=1$ the probabilities $\operatorname{Pr}\{X \leq-1\}, \operatorname{Pr}\{X=1\}, \operatorname{Pr}\{X \geq 0\}$ and $\operatorname{Pr}\{1<X\}$

Task 3: Let X be a random variable with density $f(z)=\frac{1}{\sqrt{z}}$ for $0<z \leq 1$ and zero otherwise.
a) Compute the cdf $F(z)$ of X and draw f and F
b) Compute the expectation of X

Task 4: Given a Poisson point process with intensity $\lambda=\frac{1}{2}$. What is the probability that a realization of the process has no points in the interval $[3,5] \cup[-2,0]$?

Task 5: Let $X_{1}, \ldots ., X_{n}$ be iid random variables with values in $\{-2 ;+2\}$ and $\operatorname{Pr}\left\{X_{i}=2\right\}=\frac{1}{2}$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$.
a) Use the central limit theorem to estimate the probability that $\left|S_{40000}\right|>800$.
$(\Phi(1)=0.84134 ; \Phi(1.5)=0.93319 ; \Phi(2)=0.97725 ; \Phi(2.5)=0.99379 ; \Phi(3)=0.99865 ; \Phi(4)=$ 0.99997)
b) (optional): Use the Rademacher bound to obtain an upper bound on the probability $\operatorname{Pr}\left(\left|S_{40000}\right|>800\right)$. The Rademacher bound is as follows: Let Y_{i} be iid random variables with values $Y_{i} \in\{-1,+1\}$ and $\operatorname{Pr}\left\{Y_{i}=1\right\}=\frac{1}{2}$. Let $\left\{a_{i}\right\}_{i=1}^{n}$ be any sequence of real numbers. Then the following bound holds:

$$
\begin{equation*}
\operatorname{Pr}\left\{\sum_{i=1}^{n} a_{i} Y_{i} \geq t \cdot\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{\frac{1}{2}}\right\} \leq e^{-\frac{t^{2}}{2}} \tag{1}
\end{equation*}
$$

Task 6: Given X_{1}, \ldots, X_{n} iid random variables with $X_{i} \sim U([0, \theta])$ with unknown θ and U being the uniform distribution.

Use the method of moments to estimate θ if you have a sample of 5 values $X_{1}=1, X_{2}=3, X_{3}=2$, $X_{4}=1.5$ and $X_{5}=2.5$.

Task 7: The joint density f of three random variables X, Y, Z is given as $f(x, y, z)=4 a^{5} x y e^{-(2 a x+a y+a z)}$ for $x, y, z \geq 0$ and zero otherwise; the parameter $a>0$ is unknown. For the sample $(X, Y, Z)=(1,2,2)$ compute the maximum likelihood estimator of a.

Task 8: Given a random variable X with uniform distribution on $[0,2]$, that is $X \sim U([0,2])$. Compute the cdf and the density of $Y=X^{2}$.

Task 9: : Given two independent random variables X and Y with expectations $E X=1$ and $E Y=$ 2 and variances $\operatorname{Var} X=2$ and $\operatorname{Var} Y=4$. Use the Chebychev inequality to estimate the probability $\operatorname{Pr}\{|2 X-Y| \geq 4\}$ from above.

Task 11: (optional) Let X be a uniform distributed continuos random variable in the interval [0; 1] :
Compute the density and cumulative distribution function of the random variable $Y=\ln X$: Sketch the graph of the density and the cumulative distribution function of Y :

