Written exam statistic

Task 1: Equipp the set $\Omega = \mathbb{N}$ with a probability measure \mathbb{P} . Here \mathbb{N} denotes the set of natural numbers $\{0, 1, 2, 3,\}$.

a) define a random variable X on the probability space (Ω, \mathbb{P}) such that $0 < var(X) < \infty$

b) compute the expectation and variance of X

c) Find two independent events A and B on (Ω, \mathbb{P})

Task 2: Given a continuos random variable X with cdf (cumulative distribution function) $F_X(z) = 1 - e^{-ax^2}$ for $x \ge 0$ and zero otherwise (a > 0)

a) Compute the density f(z) of X and draw f(z) and F(z) for the value a = 1

b) Compute for a = 1 the probabilities $\Pr\{X \le -1\}$, $\Pr\{X = 1\}$, $\Pr\{X \ge 0\}$ and $\Pr\{1 < X\}$

Task 3: Let X be a random variable with density $f(z) = \frac{1}{\sqrt{z}}$ for $0 < z \le 1$ and zero otherwise.

a) Compute the cdf F(z) of X and draw f and F

b) Compute the expectation of X

Task 4: Given a Poisson point process with intensity $\lambda = \frac{1}{2}$. What is the probability that a realization of the process has no points in the interval $[3,5] \cup [-2,0]$?

Task 5: Let $X_1, ..., X_n$ be iid random variables with values in $\{-2; +2\}$ and $\Pr\{X_i = 2\} = \frac{1}{2}$. Let $S_n = \sum_{i=1}^n X_i$.

a) Use the central limit theorem to estimate the probability that $|S_{40000}| > 800$.

 $(\Phi(1) = 0.841\,34; \Phi(1.5) = 0.933\,19; \Phi(2) = 0.977\,25; \Phi(2.5) = 0.993\,79; \Phi(3) = 0.998\,65; \Phi(4) = 0.999\,97$)

b) (optional): Use the Rademacher bound to obtain an upper bound on the probability $\Pr(|S_{40000}| > 800)$. The Rademacher bound is as follows: Let Y_i be iid random variables with values $Y_i \in \{-1, +1\}$ and $\Pr\{Y_i = 1\} = \frac{1}{2}$. Let $\{a_i\}_{i=1}^n$ be any sequence of real numbers. Then the following bound holds:

$$\Pr\left\{\sum_{i=1}^{n} a_i Y_i \ge t \cdot \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}}\right\} \le e^{-\frac{t^2}{2}}$$
(1)

Task 6: Given $X_1, ..., X_n$ iid random variables with $X_i \sim U([0, \theta])$ with unknown θ and U being the uniform distribution.

Use the method of moments to estimate θ if you have a sample of 5 values $X_1 = 1$, $X_2 = 3$, $X_3 = 2$, $X_4 = 1.5$ and $X_5 = 2.5$.

Task 7: The joint density f of three random variables X, Y, Z is given as $f(x, y, z) = 4a^5xye^{-(2ax+ay+az)}$ for $x, y, z \ge 0$ and zero otherwise; the parameter a > 0 is unknown. For the sample (X, Y, Z) = (1, 2, 2) compute the maximum likelihood estimator of a.

Task 8: Given a random variable X with uniform distribution on [0, 2], that is $X \sim U([0, 2])$. Compute the cdf and the density of $Y = X^2$.

Task 9: : Given two independent random variables X and Y with expectations EX = 1 and EY = 2 and variances VarX = 2 and VarY = 4. Use the Chebychev inequality to estimate the probability $\Pr\{|2X - Y| \ge 4\}$ from above.

Task 11: (optional) Let X be a uniform distributed continuos random variable in the interval [0;1]:

Compute the density and cumulative distribution function of the random variable $Y = \ln X$: Sketch the graph of the density and the cumulative distribution function of Y: